936 research outputs found

    Study on Energy Accumulation and Dissipation Associated with Coal Burst

    Get PDF
    Coal burst, which refers to the brittle failure of coal, has been a serious hazard for underground coal mining, particularly at greater depth. Massive energy accumulated in coal could be dissipated almost instantaneously in the form of kinetic energy when the loading stress exceeding the ultimate strength of coal. This thesis qualitatively and quantitatively examines the energy accumulation and dissipation process associated with coal burst through a comprehensive research program of literature review, theoretical analysis and experimental studies. The energy accumulation sources, dissipation forms and its influencing factors of coal burst are reviewed based on the energy conservation law and the static-dynamic loads superposition theory. The burst energy is provided by static loads including gravitational and abutment stress, and dynamic loads including fault slipping and roof weighting. Studies indicated that the main driving energy source of coal burst occurred in Australian coal mines resulted from elastic energy storage that has been accumulated during the loading process of coal

    Coal Burst: A State of the Art on Mechanism and Prevention from Energy Aspect

    Get PDF
    Coal burst continues to be one of the most catastrophic safety hazards faced by future mining as the stress environment will be more complicated with the increase of mining depth. Many chief coal mining countries including Poland, Czech Republic, the U.S., China, and Australia have experienced fatal accidents caused by coal burst and conducted comprehensive research on the driving forces and solving technologies related to coal burst. In this chapter, the research outcomes of the mechanism, risk evaluation, risk monitoring, and prevention of coal burst are reviewed, which is helpful for mining researchers and engineers to understand and control the safety hazards caused by coal burst, and, hence, to achieve sustainable and safe mining

    IMPROVING XIAOMI’S PRESENCE IN THE SWEDISH MARKET BY UNDERSTANDING YOUNG CONSUMERS

    Get PDF
    The main purpose of this study is to define how Xiaomi can improve its market share in Sweden by understanding young consumers’ preferences for smartphone brands. The purpose is to let the case company know more about the Swedish market. This study uses the method of online questionnaire and quantitative method is being used for creating development suggestions for the case company. The main data in this study was collected through the responses of the respondents in the Swedish area. The theoretical part of this study consists of global marketing strategies, such as SWOT, PEST analysis, and combines with the customer buying decision strategy in order to analyze purchasing behavior and interests of consumers. In addition, internal and external analysis tools are introduced to support the theoretical results. The thesis presents steps on how the case company can enter the Swedish market. Moreover, the thesis presents how the case company can make its smartphone products more attractive to young Swedish customers

    Third-codon transversion rate-based _Nymphaea_ basal angiosperm phylogeny -- concordance with developmental evidence

    Get PDF
    Flowering plants (angiosperms) appeared on Earth rather suddenly approximately 130 million years ago and underwent a massive expansion in the subsequent 10-12 million years. Current molecular phylogenies have predominantly identified _Amborella_, followed by _Nymphaea_ (water lilies) or _Amborella_ plus _Nymphaea_, in the ANITA clade (_Amborella_, Nymphaeales, Illiciaceae, Trimeniaceae and Austrobaileyaceae) as the earliest angiosperm. However, developmental studies suggest that the earliest angiosperm had a 4-cell/4-nucleus female gametophyte and a diploid endosperm represented by _Nymphaea_, suggesting that _Amborella_, having an 8-cell/9-nucleus female gametophyte and a triploid endosperm, cannot be representative of the basal angiosperm. This evolution-development discordance is possibly caused by erroneous inference based on phylogenetic signals with low neutrality and/or high saturation. Here we show that the 3rd codon transversion (P3Tv), with high neutrality and low saturation, is a robust high-resolution phylogenetic signal for such divergences and that the P3Tv-based land plant phylogeny cautiously identifies _Nymphaea_, followed by _Amborella_, as the most basal among the angiosperm species examined in this study. This P3Tv-based phylogeny contributes insights to the origin of angiosperms with concordance to fossil and stomata development evidence

    Computational simulation of the flow dynamic field in a porous ureteric stent

    Get PDF
    Ureteric stents are employed clinically to manage urinary obstructions or other pathological conditions. Stents made of porous and biodegradable materials have gained increasing interest, because of their excellent biocompatibility and the potential for overcoming the so-called ‘forgotten stent syndrome’. However, there is very limited characterisation of their flow dynamic performance. In this study, a CFD model of the occluded and unoccluded urinary tract was developed to investigate the urinary flow dynamics in the presence of a porous ureteric stent. With increasing the permeability of the porous material (i.e., from 10−18 to 10−10 m2) both the total mass flow rate through the ureter and the average fluid velocity within the stent increased. In the unoccluded ureter, the total mass flow rate increased of 7.7% when a porous stent with permeability of 10−10 m2 was employed instead of an unporous stent. Drainage performance further improved in the presence of a ureteral occlusion, with the porous stent resulting in 10.2% greater mass flow rate compared to the unporous stent. Findings from this study provide fundamental insights into the flow performance of porous ureteric stents, with potential utility in the development pipeline of these medical devices. Graphical abstrac

    Comparative Genomics Analysis Provides New Insight Into Molecular Basis of Stomatal Movement in Kalanchoë fedtschenkoi

    Get PDF
    CO2 uptake and water loss in plants are regulated by microscopic pores on the surface of leaves, called stomata. This enablement of gas exchange by the opening and closing of stomata is one of the most essential processes in plant photosynthesis and transpiration, affecting water-use efficiency (WUE) and thus drought susceptibility. In plant species with crassulacean acid metabolism (CAM) photosynthesis, diel stomatal movement pattern is inverted relative to C3 and C4 photosynthesis species, resulting in much higher WUE and drought tolerance. However, little is known about the molecular basis of stomatal movement in CAM species. The goal of this study is to identify candidate genes that could play a role in stomatal movement in an obligate CAM species, Kalanchoë fedtschenkoi. By way of a text-mining approach, proteins were identified in various plant species, spanning C3, C4, and CAM photosynthetic types, which are orthologous to proteins known to be involved in stomatal movement. A comparative analysis of diel time-course gene expression data was performed between K. fedtschenkoi and two C3 species (i.e., Arabidopsis thaliana and Solanum lycopersicum) to identify differential gene expression between the dusk and dawn phases of the 24-h cycle. A rescheduled catalase gene known to be involved in stomatal movement was identified, suggesting a role for H2O2 in CAM-like stomatal movement. Overall, these results provide new insights into the molecular regulation of stomatal movement in CAM plants, facilitating genetic improvement of drought resistance in agricultural crops through manipulation of stomata-related genes
    • …
    corecore